首页> 外文OA文献 >Biologically Inspired Approaches to Automated Feature Extraction and Target Recognition
【2h】

Biologically Inspired Approaches to Automated Feature Extraction and Target Recognition

机译:生物启发的自动特征提取和目标识别方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ongoing research at Boston University has produced computational models of biological vision and learning that embody a growing corpus of scientific data and predictions. Vision models perform long-range grouping and figure/ground segmentation, and memory models create attentionally controlled recognition codes that intrinsically cornbine botton-up activation and top-down learned expectations. These two streams of research form the foundation of novel dynamically integrated systems for image understanding. Simulations using multispectral images illustrate road completion across occlusions in a cluttered scene and information fusion from incorrect labels that are simultaneously inconsistent and correct. The CNS Vision and Technology Labs (cns.bu.edulvisionlab and cns.bu.edu/techlab) are further integrating science and technology through analysis, testing, and development of cognitive and neural models for large-scale applications, complemented by software specification and code distribution.
机译:波士顿大学正在进行的研究已经产生了生物视觉和学习的计算模型,这些模型体现了越来越多的科学数据和预测。视觉模型执行远程分组和图形/地面分割,记忆模型创建受注意控制的识别码,这些识别码本质上是使宾顿自上而下的激活和自上而下的学习期望。这两个研究流形成了用于图像理解的新型动态集成系统的基础。使用多光谱图像进行的模拟说明了杂乱场景中的交叉路段的道路完成情况,以及来自不一致且正确的不正确标签的信息融合。 CNS视觉和技术实验室(cns.bu.edulvisionlab和cns.bu.edu/techlab)通过分析,测试和开发针对大规模应用的认知和神经模型,进一步整合科学技术,并辅以软件规范和代码分配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号